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Introduction

Current routing protocols for WSNs

Address based Content based
Structural or Random routing
location based Flooding

routing schemes



Contribution

e Virtual Coordinate Based Routing in WSNs
— Properties of VCS
— Novel routing protocol- Convex Subspace Routing

— Performance evaluation of CSR

 Performance of Random Routing in Grid
Based WSNs
— Analytical model

— Model verification and applications



Introduction

 Hierarchical addressing -
- Physical coordinates
%

*No geographical information

*GPS not feasible always
*Position/location of the sensors
*Energy constraints

*Routing =2 Insensitive to physical voids




e Ordinate:
Relative position
in terms of # hops

wrt an anchor node
— Ex: A,B,C,D anchors

Virtual Coordinate Systems - VCS

A=(@43F)
B= (4, ,s,spI
514,10 |
—
)
[ ‘S
D= (6,8(5,0,0) C=(@3m3)5)

Do not rely on geographic information

e Simple and scalable

* Routing is not sensitive to physical voids
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Issues in VCS

e |[ssue 1: Optimal number of anchors required
is unknown

(0,4.9,6

— Under deployment of anchors 13

e |dentical coordinates

— Over deployment of anchors
. (6,10,15,0) (9,5,0,15)
 |nefficient

e Redundant anchors = Redundant information

e Degrade Greedy ratio (portion of paths that can be
routed using GF only)



Example: Over Deployment of Anchors

* Three anchors A, ,A, and A,

e Source =(2,2,4 14@\
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e Redundant anchors give improper weight
in some directions



Issue 2: Improper Anchor Placement

e Degrade Greedy ratio
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e Also increases the identical coordinates



Properties of VCS

b )

roperty 1: In a virtual coordinate system, two
anchors cannot have identical coordinates.
Also a node and an anchor coordinate cannot
have identical coordinates

\- J

— it anchor’s , it" ordinate is zero
e Ordinates are always positive
* Orthogonal coordinate system
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Properties of VCS (Cntd.)

‘Property 2:

maximizers in

Internal

_corresponding to its own coordinate

are local)
function

anchors
distance

J

Variation ot the distance to a selected destmation trom other nodes
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Illustrate Property 2

Network with single anchor A

Destination, N4=(n[A, N ])

Any other node’s coordinate = n

Distance function from any node N. to node N,

n[N;, Ng] = /(n — n[4, Ny])?

12



Illustrate Property 2 (Cntd.)

argmax

(Vo= n[ANgD2) = 0
e Zero is anchor coordinate
* Two anchors A;and A, ;
(n[N;, Ng])* = (n[N;, A1] — n[Ng, A D* + (n[N;, A;] — n[Ng, A;])*

 1stterm alone creates a maximum at
anchor A, and 2"? term at anchor A,

Internal anchors may cause local maxima and identical
coordinates



Proper Anchor Placements in 1-D
Network

Lemma 1:

e One anchor placed at the corner of a 1-D
network
— provides unique coordinates for different nodes
— allows for routing without local maxima
achieving 100% greedy ratio
e |ftwo anchors are placed in the middle
— they are able to provide unique coordinates

— Yet they introduce local maxima and minima in
distance



Proof

e First part is obvious
e Ex:if two anchors are placed in the middle
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Proper Anchor Placements 2-D Full Grid

Lemma 2:

e For a rectangular full grid, two nodes
placed at adjacent corners are sufficient to
uniqguely name all the nodes

e Furthermore, such a coordinate system
does not introduce local maxima or
minima in distance space, resulting in a
greedy ratio of 100%



Proof - Part |

A and B are anchors

— Nodes are at all the cross points

— Blue and green lines: level sets with respect
toAand B

A
/

-~
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Proof — Part 2

e 100% greedy ratio

e Distance function is parabolic with minimum
at destination

(N[N, Ng])* =(x+y —x4=yq)°+ (x =y + N = (x4 —yq + N))?

=2(x = xg)* + 2(y = yq)°

18



Upper and Lower Bounds for Path Lengths

[ ] (o]
o 0O 0o ° o
(o] (o] (o]
[ ] (o] ° ° (o] (o] °
Lemma 3: °
o (o] o (o] (o]
e M anchors e L, o o e

 Source = (n[N,,A,], n[N_A,],...)
* Destination = (n[NgA,], n[NgA,l...)

e Shortest hop distance between the two
nodes in hops, Min(n[N,, N4]) is bounded by:

Max (In[Ng, Ai], —=n[N;, A;]]) € Min(n[N;, Ng]) < Min(n[N,, A;] + n[Ng, A;]);



Proof

Max (|In[Ng, A;]l, —n[Ng4, A;]]) < Min(n[N,, N;]) < Min(n[Ng, A;] + n[Ny, A;D;
n[Ns, A;] + n[Ng, Aj]
Min (n[Ng, A;] + n[Ng, A;])

Anchor

(In[Ng, A;], —n[N4, A1)
Max (In[Ng, Ail, —n[Ng, Aill)




Improvement in Routability: Convex
Subspace Routing (CSR)

* No need of back tracking if distance surface is
convex

e Select subset of anchors
—convex distance function from source to

llllllllllllllllllllllllllllllllllllllll

destination

* Manchors—> selectst °
— r, vertices of a convex .
. Destination

— Current node and des  ~ e
convex set >



Example: Convex Subspace

a) ,
° I\/1;::;7; r= 11 ) Afchor 2

Anchor6  Ancgr3

(]
Anchor 4

a)convex polygon created by 7 b) convex polygon created by
anchors subset (4) of anchors

e What is the value of r?
— Three. Why? ) b)

a) Non convex boundary  p) Triangle is always
created by 4 anchors convex shape 22



ldentifying Three Anchors that Enclose
a Node

* |n virtual space, 3 anchors will give a triangle

B (nag, O, Ngc)

C(nac, Nge, 0)
A (0, Nag, Nac)

e Area of a triangle of perimeter 25,

\/S(S — Nyp) (S — npc) (S — nye)

1
5 = E(HAB + Npc + Nyc)

23



ldentifying Three Anchors that Enclose
a Node (Cntd.)

e Any node N

- B [n,&.BJ DJ nBC]
N(HNA, Nne, nNC)

k C(n.ﬁC# nBC: D)
A [DJ' nAEJ nﬂ.C)

e If Nisinside ABC, then
Max[(ANAB + ANAC), (ANAB + ANBC), (ANBC + ANAC)] < (4ABC)

(1)

24



ldentifying Three Anchors that Enclose
a Node (Cntd.)

N (nna, Nng, Nne)

N will not be captured if Eq (1) is used
e But Nis also in the routable set

Min[(ANAB + ANAC), (ANAB + ANBC), (ANBC + ANAC)] < (ZIA(BC))
2

e Larger feasible set



Example

m Anchors

< Selected nodes
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Distance function to a selected destination a) Max [(ANAB+ANAC), (ANAB+ ANBC),
(ANBC+ANAC)]< (AABC) b) Min[(ANAB+ANAC), (ANAB+ANBC), (ANBC+ANAC)] < (AABC)
26



if (N, is not N) Algorithm of CSR

while(N, is not reached)
Find the 1 suitable triplet of anchors that includes N;and N,
If a triplet NOT found
Routing failed
else
Evaluate the distances from N; and its neighbors to N, using only the coordinate with
respect to selected triplet
If min(distances ( neighbors to N,))==
If neighbor that has zero distance == N,

Successtully routed

else
Get another triplet for routing. If no triplet found then
routing failed

end

elseif min(distances(a neighbor to N,))< distances (N; to N,)
N ;= neighbor that has the minimum distance
else %i.e. (distances ( neighbors to N,))> distances (N;to N,)
Get another triplet for routing. If no triplet found then routing fail
end
end
end

end 27



Algorithm of CSR(Cntd.)




Algorithm of CSR(Cntd.)

When ever triplet is
not found, routing
fails

A5
o No virtually closer

o neighbor = Change
o ° the triplet
Identical ° N
coordinates. Zero o o
distance but not o
the destination o
A7 () A4
()
()
° ¢ o
()
() ()
()
A3

A, 29



Simulation Results

e 30 x 30 grids with 100 missing nodes
— Randomly placed

e 20 anchors

— Randomly placed
e On the boundary
e Anywhere
e Furthest apart property is not considered

e Compared with Logical Coordinate Routing
(LCR) 1]

[1] Q. Cao and T Abdelzaher, “Scalable logical coordinates framework for routing in wireless sensor
networks”, ACM transactions on Sensor Networks, Vol. 2,No. 4,pp. 557-593, Nov 2006.



Performance Variation with Random
Deployments

Average Routability for random deployments

Average routability %
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No back tracking
Very low memory consumption

5 Not sensitive to over deployment

10

15 of anchors

random deployment



Performance Variation with Random

# number of times

# number of times

Deployments (Cntd.)

Histogram of difference between routability when anchors are in the boundary
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Performance Variation with Number of

Avg Energy

Awg routability %

Avg # of hopsSh
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Performance Variation with Sparsity

Avg Energy

Ay routability %o
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Contribution

e Virtual Coordinate Based Routing in WSNs
— Properties of VCS
— Novel routing protocol- Convex Subspace Routing

— Performance evaluation of CSR

 Performance of Random Routing in Grid Based
WSNs

— Analytical model

e For 5 cases

— Model verification and applications

e For 3 applications



Introduction: Performance of Random
Routing in Grid Based WSNs

Current routing protocols for WSNs

Content based Address based
Random routing Stru.ctural or
Flooding location based

routing schemes

In some applications initial stage is random




Introduction (Cntd.)

Initial stage:

37



Contribution

e Mathematical model to evaluate

— Exact probability of a packet visiting a node within
a given number of hops

— Rendezvous probability of agent and query

— Optimize the # of queries/agents required under
different constraints

38



Analytical Model

e Step 1: P, (1,J) : P[Packet reaching (/,J) in the H-
th hop]

e Step 2: Q. (1,J) : P[Packet visiting (1,J) within H-
hops]

e Step 3: P[Agent meeting query anywhere for
the first time within h -hops]



Step 1: Packet reaching (/,J) in the H-th
hop 4

e Number of hops moved in
— East(E)=e, West(W)=w,
— North(N)=n, South(S)=s

I+ (HA(1H) o ( H
S N R
H
I+J | H-(1+J)

e:IHW:ONn:JHS:OIe:i W=l n=j s=]j




Step 1 (Cntd.)

Select the next node with: — e

K

0
o
e ?
0

e Case 1: Equal probability

e Case 2: Equal probability in a lossy network

e Case 3: Equal probability in lossless networks
with rectangular boundaries

e Case 4: Unequal probabilities

o
@
— 9

e Case 5: Self avoiding forwarding




Case 1: Select the Next Node With
Equal Probability

e P, (l,J): Packet reaching (/,J) in the H-th hop

P (1)) = 3 i ) = (H-(1+2))/2
{19 =2 (I+i)!i!(J+j)!j!(Zj Ar1=H=(1+)

e Using Vandermonde's Convolution

P.(1,J) = H!°C, (
T M=)V =)

EJH_M:H+I+J
4 2



Probability of a Packet Visiting (1, J) in
the H-th Hop — Another Representation

—0,(1,9)-P, ,(00)

h hops (h=>(1+J))

* p,(l,J): P[Packet yigikin
first time in the A<th hop]

e P, ,(00): P[Packet.reaching

(0,0) at the end of (H-h) hop

* P (l,J): P[Packet reaching (I,J) in the H-th hop]

219 = Y P (1,9)RO0



Step 2: Packet visiting (I, J) within H-hops

e Q.(l,J) : P[Packet visiting (I,J) within H-hops]

Q,(1,J) = iph(l,J) K=1+J

h hops (h>(1+J)) 2p, (1,J)

44



Step 3: Rendezvous Probability of
Agent and Query

e P [Agent NOT meeting query anywhere within
hohopsl  wm, . = [](2-Q..0,9)Q, (113))

v(1+J)<h,

Meeting
* P [Agent meeting query W;;L |
anywhere for the first time | |agent (_/j' T

within h -hops] A }/‘f

RHe’hq = 1—|\/|He’hq y
(0,00 Quer




Step 3 (Cntd.)

« Q,M\1,J) :P[At least one of N packets visiting (1,J)
in h-hops |
— Each packet is independent and identical

Q.M (1,3)=1-a-Q,(1,I)N"

* P[Any of the N, agents NOT meeting any of N,
queries]

N, H(l—QHe‘Ne)(l,J)th‘N‘”“”J’>)

% v(I+d)<h,

MH, h,

46



Simulation Results

Case 01: Exact probability, Q,(1,J)

170 hops
]
.(_D —

J) within H
o o
~ ™

= 0.6

o 9
~o

cket visiting

803

a

5 0.2
)

Probabilit

Probability of a packet visiting (I,J) within H hops Vs node location(l,J)

i

o & MO

< M.C. simulation results

J coordinate
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Applications of the Model

Fixed energy budget
— Fixed packet length in lossless network
— Varying packet length in lossless network
— Fixed packet length in lossy network

48



Applications of the Model (Cntd.)

e No memory -2 Fixed packet length

* Total energy consumption = Energy for agents
+ Energy for queries

* Fixed total energy, i.e.
— energy used for agents is fixed
— energy used for queries is fixed



Applications of the Model (Cntd.)

Fixed total energy of agent(s)/query(s)
E.g.: 1 agent/query - TTL 30
2 agents/queries 2 TTL 15




Applications of the Model (Cntd.)

Conclusion: Best performance is given by single agent under

fixed agent energy constraint

AVG Probability of agent meeting query WITHIN hqg hops
—-—N=1,Ne=1 | I I

_____ N =1,1=2

o
-\I

o

o

—a— N =1N=3
¥ N=2N=1
——— N =2N=2
x  N=2]=3
—a N=3N=1

—
o))

o
3,

=)

1

o
=~

—a— N =3N=2

— & — N =3N=3

o

o

AVG probability per node

0 3 10 15 20 25 30

Query TTL(hq) o1



Applications of the Model (Cntd.)

FO r q ue rv: AVG Probability of agent meeting query WITHIN hqg hops

0.7 ——w=13=1 ! ! ; ;
————— N =LN=2 ‘Ne=1, Ng=3
= i 1 : f i
0.6 —*#—NaLN=3 | s T e g g
%  N=2N=1 : ;
$ s E : A : % ¥
¢ N=2N= : : B ; % ¥
05 q el | e L v s ** ....... _1 ............ iy
X N=2)=3 - Ne=1, NG=4
—— N=3N=1 T

—
- u

i . B

o

AVG probability per node

0 5 10 15 20 25 30
Query TTL(hq)

Conclusion: For a given energy allocation for queries, the

reliability that can be achieved is independent of N,
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Summary and Discussion

e |ssues > Optimal number of anchors
required and improper anchor placements

 Properties of VCS

 Convex Subspace Routing

— Improvements in routability and energy
efficiency

— Independent of anchor placement

— No memory usage



Summary and Discussion(Cntd.)

 Derived the exact probabilities of

— a packet visiting a node of interest within given
number of hops
* For 5 scenarios

— agents meeting queries
with Random Routing in rectangular grid

* Model can be used to select parameters for
optimum performance
e For 3 applications
e Model results hold even for sparse networks
with node availability > 75%



Future Work

Improve the way of identifying convex routing
surface

— Virtual domain geometric relations

Defining convex routing surface using more than
3 anchors

How to identify redundant anchors

Extend the Mathematical model to n-connected
network

Develop a virtual coordinate system using the
past agents and queries in the network

— Organized random routing



Thank you !

»
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dulanjalie.dhanapala@colostate.edu
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