On Virtual Coordinate Based Routing and Performance of Random Routing in WSNs

Committee:

Prof. Anura P. Jayasumana

Prof. Ali Pezeshki

Prof. Indrakshi Ray

Dulanjalie Dhanapala
Thesis Defense
07.10.2009

Sponsors: NSF Grant CNS-0720889

Introduction

Current routing protocols for WSNs

Address based

Structural or location based routing schemes

Content based

Random routing Flooding

Contribution

- Virtual Coordinate Based Routing in WSNs
 - Properties of VCS
 - Novel routing protocol- Convex Subspace Routing
 - Performance evaluation of CSR
- Performance of Random Routing in Grid Based WSNs
 - Analytical model
 - Model verification and applications

Introduction

Routing Protocols

Address based

Content based

Hierarchical addressing

Physical coordinates

Virtual coordinates

- No geographical information
- GPS not feasible always
 - Position/location of the sensors
 - Energy constraints
- •Routing → Insensitive to physical voids

Virtual Coordinate Systems - VCS

• Ordinate:

Relative position in terms of # hops wrt an anchor node

– Ex: A,B,C,D anchors

- Do not rely on geographic information
- Simple and scalable
- Routing is not sensitive to physical voids

Example

•
$$P = (5,1,4,11)$$

•
$$S = (6,10,15,2)$$

•
$$N_1 = (5,9,14,1)$$

•
$$N_2 = (7,11,16,1)$$

•
$$n[S,P] = 16.85$$

•
$$n[N_1, P] = 16.25$$

• $n[N_2, P] = 18.14$

Forward to N₁

If geographical routing?

Issues in VCS

- Issue 1: Optimal number of anchors required is unknown
 - Under deployment of anchors
 - Identical coordinates
 - Over deployment of anchors
 - Inefficient
 - Redundant anchors

 Redundant information
 - Degrade Greedy ratio (portion of paths that can be routed using GF only)

Example: Over Deployment of Anchors

• Three anchors A_1 , A_2 and A_3

 Redundant anchors give improper weight in some directions

Issue 2: Improper Anchor Placement

Degrade Greedy ratio

Also increases the identical coordinates

Properties of VCS

Property 1: In a virtual coordinate system, two anchors cannot have identical coordinates. Also a node and an anchor coordinate cannot have identical coordinates

- $-i^{th}$ anchor's, i^{th} ordinate is zero
 - Ordinates are always positive
 - Orthogonal coordinate system

Properties of VCS (Cntd.)

Property 2: Internal anchors are local maximizers in distance function corresponding to its own coordinate

Variation of distance to a selected destination from all the other nodes in a 15x15 grid with three anchors in the grid

Illustrate Property 2

- Network with single anchor A
- Destination, N_d=(n[A, N_d])
- Any other node's coordinate = n
- Distance function from any node N_i to node N_d

$$n[N_i, N_d] = \sqrt{(n - n[A, N_d])^2}$$

Illustrate Property 2 (Cntd.)

$$\underset{n}{argmax} \left(\sqrt{(n - n[A, N_d])^2} \right) = 0$$

- Zero is anchor coordinate
- Two anchors A₁ and A₂;

$$(n[N_i, N_d])^2 = (n[N_i, A_1] - n[N_d, A_1])^2 + (n[N_i, A_2] - n[N_d, A_2])^2$$

 1st term alone creates a maximum at anchor A₁ and 2nd term at anchor A₂

Internal anchors may cause local maxima and identical coordinates

Proper Anchor Placements in 1-D Network

Lemma 1:

- One anchor placed at the corner of a 1-D network
 - provides unique coordinates for different nodes
 - allows for routing without local maxima achieving 100% greedy ratio
- If two anchors are placed in the middle
 - they are able to provide unique coordinates
 - Yet they introduce local maxima and minima in distance

Proof

- First part is obvious
- Ex: if two anchors are placed in the middle

Proper Anchor Placements 2-D Full Grid

Lemma 2:

- For a rectangular full grid, two nodes placed at adjacent corners are sufficient to uniquely name all the nodes
- Furthermore, such a coordinate system does not introduce local maxima or minima in distance space, resulting in a greedy ratio of 100%

Proof - Part I

A and B are anchors

- Nodes are at all the cross points
- Blue and green lines: level sets with respect to A and B

Proof – Part 2

- 100% greedy ratio
- Distance function is parabolic with minimum at destination

$$(n[N_s, N_d])^2 = (x + y - x_d - y_d)^2 + (x - y + N - (x_d - y_d + N))^2$$
$$= 2(x - x_d)^2 + 2(y - y_d)^2$$

Upper and Lower Bounds for Path Lengths

Lemma 3:

- M anchors
- Source \equiv (n[N_s,A₁], n[N_s,A₂],...)
- Destination \equiv (n[N_d,A₁], n[N_d,A₂],...)
- Shortest hop distance between the two nodes in hops, Min(n[N_s, N_d]) is bounded by:

 $\text{Max}(|n[N_S, A_i], -n[N_d, A_i]|) \le \text{Min}(n[N_S, N_d]) \le \text{Min}(n[N_S, A_i] + n[N_d, A_i]);$

Proof

 $\text{Max}(|n[N_S, A_i], -n[N_d, A_i]|) \le \text{Min}(n[N_S, N_d]) \le \text{Min}(n[N_S, A_i] + n[N_d, A_i]);$

$$n[N_s, A_i] + n[N_d, A_i]$$

 $Min(n[N_s, A_i] + n[N_d, A_i])$

 $Max (|n[N_s, A_i], -n[N_d, A_i]|)$

Improvement in Routability: Convex Subspace Routing (CSR)

- No need of back tracking if distance surface is convex
- Select subset of anchors

convex distance function from source to destination

- M anchors → select st
 - r, vertices of a convex
 - Current node and des convex set

Example: Convex Subspace

• M=7, r=4

b) Δ N_d

a)convex polygon created by 7 anchors

b) convex polygon created by subset (4) of anchors

- What is the value of *r*?
 - Three. Why?

a) Non convex boundary created by 4 anchors

b) Triangle is always convex shape 22

Identifying Three Anchors that Enclose a Node

• In virtual space, 3 anchors will give a triangle

Area of a triangle of perimeter 2S;

$$\sqrt{S(S - n_{AB})(S - n_{BC})(S - n_{AC})}$$

$$S = \frac{1}{2}(n_{AB} + n_{BC} + n_{AC})$$

Identifying Three Anchors that Enclose a Node (Cntd.)

Any node N

If N is inside ABC, then

$$Max[(\Delta NAB + \Delta NAC), (\Delta NAB + \Delta NBC), (\Delta NBC + \Delta NAC)] \le (\Delta ABC)$$
(1)

Identifying Three Anchors that Enclose a Node (Cntd.)

- N will not be captured if Eq (1) is used
- But N is also in the routable set

$$Min[(\Delta NAB + \Delta NAC), (\Delta NAB + \Delta NBC), (\Delta NBC + \Delta NAC)] \le (\Delta ABC)$$
(2)

Larger feasible set

Example

Distance function to a selected destination a) Max [(Δ NAB+ Δ NAC), (Δ NAB+ Δ NBC), (Δ NBC+ Δ NAC)] \leq (Δ ABC) b) Min[(Δ NAB+ Δ NAC), (Δ NAB+ Δ NBC), (Δ NBC+ Δ NAC)] \leq (Δ ABC)

```
Algorithm of CSR
if (N_d is not N_i)
   while(N<sub>d</sub> is not reached)
         Find the 1st suitable triplet of anchors that includes N<sub>i</sub> and N<sub>d</sub>
        if a triplet NOT found
            Routing failed
        else
           Evaluate the distances from N_i and its neighbors to N_d using only the coordinate with
           respect to selected triplet
           if min(distances ( neighbors to N_d))==0
                       if neighbor that has zero distance == N_d
                                  Successfully routed
                       else
                                  Get another triplet for routing. If no triplet found then
                                  routing failed
                       end
           elseif min(distances(a neighbor to N_d)) \leq distances (N_i to N_d)
                       N ;= neighbor that has the minimum distance
           else %i.e. (distances ( neighbors to N_d))> distances (N_i to N_d)
                       Get another triplet for routing. If no triplet found then routing fail
           end
       end
  end
                                                                                             27
```

end

Algorithm of CSR(Cntd.)

Algorithm of CSR(Cntd.)

Simulation Results

- 30 x 30 grids with 100 missing nodes
 - Randomly placed
- 20 anchors
 - Randomly placed
 - On the boundary
 - Anywhere
 - Furthest apart property is not considered
- Compared with Logical Coordinate Routing (LCR) [1]

Performance Variation with Random Deployments

Performance Variation with Random Deployments (Cntd.)

Performance Variation with Number of Anchors

Performance Variation with Sparsity

Contribution

- Virtual Coordinate Based Routing in WSNs
 - Properties of VCS
 - Novel routing protocol- Convex Subspace Routing
 - Performance evaluation of CSR
- Performance of Random Routing in Grid Based WSNs
 - Analytical model
 - For 5 cases
 - Model verification and applications
 - For 3 applications

Introduction: Performance of Random Routing in Grid Based WSNs

Introduction (Cntd.)

Contribution

- Mathematical model to evaluate
 - Exact probability of a packet visiting a node within a given number of hops
 - Rendezvous probability of agent and query
 - Optimize the # of queries/agents required under different constraints

Analytical Model

- Step 1: P_H (I,J): P[Packet reaching (I,J) in the H-th hop]
- Step 2: Q_H(I,J): P[Packet visiting (I,J) within H-hops]
- Step 3: P[Agent meeting query anywhere for the first time within h_a -hops]

Step 1: Packet reaching (I,J) in the H-th hop

- Number of hops moved in
 - $\operatorname{East}(E) = e$, West(W)=w,
 - North(N)=n, South(S)=s

H $I+J \qquad H-(I+J)$ $e=I \quad w=0 \quad n=J \quad s=0 \quad e=i \quad w=i \quad n=j \quad s=j$

Step 1 (Cntd.)

Select the next node with:

Case 1: Equal probability

- Case 2: Equal probability in a lossy network
- Case 3: Equal probability in lossless networks with rectangular boundaries
- Case 4: Unequal probabilities
- Case 5: Self avoiding forwarding

Case 1: Select the Next Node With Equal Probability

P_H(I,J): Packet reaching (I,J) in the H-th hop

$$P_{H}(I,J) = \sum_{i=0}^{(H-K)/2} \frac{H!}{(I+i)!i!(J+j)!j!} \left(\frac{1}{4}\right)^{H}; i+j=(H-(I+J))/2$$

Using Vandermonde's Convolution

$$P_H(I,J) = \frac{H!^H C_M}{(M-I)!(M-J)!} \left(\frac{1}{4}\right)^H; M = \frac{H+I+J}{2}$$

Probability of a Packet Visiting (*I, J*) in the *H*-th Hop – Another Representation

- $p_h(I,J)$: P[Packet wisiting (I,J) for the first time in the h-th hop] $p_h(I,J) \cdot P_{H-h}(0,0)$
- $P_{H-h}(0,0)$: P[Packet reaching $h_{hops}(h \ge (I+J))$]

 (0,0) at the end of (H-h) hops]
- P_H(I,J): P[Packet reaching (I,J) in the H-th hop]

$$P_H(I,J) = \sum_{i=0}^{H} p_{H-i}(I,J) \cdot P_i(0,0)$$

Step 2: Packet visiting (I, J) within H-hops

Q_H(I,J): P[Packet visiting (I,J) within H-hops]

$$Q_{H}(I,J) = \sum_{h=K}^{H} p_{h}(I,J) ; K = I + J$$

$$h \text{ hops } (h \ge (I+J)) \xrightarrow{} p_{h}(I,J)$$

Step 3: Rendezvous Probability of Agent and Query

• P [Agent NOT meeting query anywhere within h_q -hops] $M_{H_e,h_q} = \prod_{\forall (I+J) \leq h_o} \left(1 - Q_{H_e}(I,J)Q_{h_q}(I',J')\right)$

Meeting // point

• P [Agent meeting query anywhere for the first time within h_q -hops]

$$R_{H_e,h_q} = 1 - M_{H_e,h_q}$$

Step 3 (Cntd.)

- Q_h^(N)(I,J): P[At least one of N packets visiting (I,J) in h-hops]
 - Each packet is independent and identical

$$Q_h^{(N)}(I,J) = 1 - (1 - Q_h(I,J))^N$$

• P[Any of the N_e agents NOT meeting any of N_q queries]

$$M_{H_e,h_q} \Big|_{N_e,N_q} = \prod_{\forall (I+J) \leq h_q} \left(1 - Q_{H_e}^{(N_e)}(I,J) Q_{h_q}^{(N_q)}(I',J') \right)$$

Simulation Results

Case 01: Exact probability, $Q_H(I,J)$

Applications of the Model

Fixed energy budget

- Fixed packet length in lossless network
- Varying packet length in lossless network
- Fixed packet length in lossy network

No memory

Fixed packet length

Total energy consumption = Energy for agents
 + Energy for queries

- Fixed total energy, i.e.
 - energy used for agents is fixed
 - energy used for queries is fixed

Fixed total energy of agent(s)/query(s)

E.g.: 1 agent/query → TTL 30

2 agents/queries → TTL 15

Conclusion: Best performance is given by single agent under fixed agent energy constraint

mercases

For query:

Conclusion: For a given energy allocation for queries, the reliability that can be achieved is independent of N_a

Summary and Discussion

- Properties of VCS
- Convex Subspace Routing
 - Improvements in routability and energy efficiency
 - Independent of anchor placement
 - No memory usage

Summary and Discussion(Cntd.)

- Derived the exact probabilities of
 - a packet visiting a node of interest within given number of hops
 - For 5 scenarios
 - agents meeting queries
 - with Random Routing in rectangular grid
- Model can be used to select parameters for optimum performance
 - For 3 applications
- Model results hold even for sparse networks with node availability ≥ 75%

Future Work

- Improve the way of identifying convex routing surface
 - Virtual domain geometric relations
- Defining convex routing surface using more than 3 anchors
- How to identify redundant anchors
- Extend the Mathematical model to n-connected network
- Develop a virtual coordinate system using the past agents and queries in the network
 - Organized random routing

Thank you!

dulanjalie.dhanapala@colostate.edu